Part Number Hot Search : 
5KP15 SDR65CTZ R6202240 SC443103 TLGD233 2N6370 12203 LN9840
Product Description
Full Text Search
 

To Download IRFP4468 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  benefits  improved gate, avalanche and dynamic dv/dt ruggedness  fully characterized capacitance and avalanche soa  enhanced body diode dv/dt and di/dt capability  lead-free applications  high efficiency synchronous rectification in smps  uninterruptible power supply  high speed power switching  hard switched and high frequency circuits s d g to-247ac IRFP4468pbf v dss 100v r ds ( on ) typ. 2.0m  max. 2.6m  i d (silicon limited) 290a  i d (package limited) 195a absolute maximum ratings symbol parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 25c continuous drain current, v gs @ 10v (wire bond limited) i dm pulsed drain current  p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v dv/dt peak diode recovery  v/ns t j operating junction and t stg storage temperature range soldering temperature, for 10 seconds (1.6mm from case) mounting torque, 6-32 or m3 screw avalanche characteristics e as (thermally limited) single pulse avalanche energy  mj i ar avalanche current  a e ar repetitive avalanche energy  mj thermal resistance symbol parameter typ. max. units r jc junction-to-case  ??? 0.29 r cs case-to-sink, flat greased surface 0.24 ??? c/w r ja junction-to-ambient  ??? 40 a c 300 740 see fig. 14, 15, 22a, 22b, 520 10 max. 290 200 1120 195 -55 to + 175 20 3.4 10lb
in (1.1n
m) 2014-8-14 1 www.kersemi.com
s d g static @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 100 ??? ??? v v (br)dss / t j breakdown voltage temp. coefficient ??? 0.09 ??? v/c r ds(on) static drain-to-source on-resistance ??? 2.0 2.6 m v gs(th) gate threshold voltage 2.0 ??? 4.0 v i dss drain-to-source leakage current ??? ??? 20 a ??? ??? 250 i gss gate-to-source forward leakage ??? ??? 100 na gate-to-source reverse leakage ??? ??? -100 r g internal gate resistance ??? 0.8 ??? dynamic @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units gfs forward transconductance 310 ??? ??? s q g total gate charge ??? 360 540 nc q gs gate-to-source charge ??? 81 ??? q gd gate-to-drain ("miller") charge ??? 89 q sync total gate charge sync. (q g - q gd ) ??? 270 ??? t d(on) turn-on delay time ??? 52 ??? ns t r rise time ??? 230 ??? t d(off) turn-off delay time ??? 160 ??? t f fall time ??? 260 ??? c iss input capacitance ??? 19860 ??? pf c oss output capacitance ??? 1360 ??? c rss reverse transfer capacitance ??? 540 ??? c oss eff. (er) effective output capacitance (energy related) ??? 1550 ??? c oss eff. (tr) effective output capacitance (time related)  ??? 900 ??? diode characteristics symbol parameter min. typ. max. units i s continuous source current ??? ??? 290 a (body diode) i sm pulsed source current ??? ??? 1120 a (body diode)  v sd diode forward voltage ??? ??? 1.3 v t rr reverse recovery time ??? 100 ns t j = 25c v r = 85v, ??? 110 t j = 125c i f = 180a q rr reverse recovery charge ??? 370 nc t j = 25c di/dt = 100a/ s  ??? 420 t j = 125c i rrm reverse recovery current ??? 6.9 ??? a t j = 25c t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) i d = 180a r g = 2.7 v gs = 10v  v dd = 65v i d = 180a, v ds =0v, v gs = 10v t j = 25c, i s = 180a, v gs = 0v  integral reverse p-n junction diode. conditions v gs = 0v, i d = 250 a reference to 25c, i d = 5ma  v gs = 10v, i d = 180a  v ds = v gs , i d = 250 a v ds = 100v, v gs = 0v v ds = 80v, v gs = 0v, t j = 125c mosfet symbol showing the v ds =50v conditions v gs = 10v  v gs = 0v v ds = 50v ? = 100 khz, see fig. 5 v gs = 0v, v ds = 0v to 80v  , see fig. 11 v gs = 0v, v ds = 0v to 80v  conditions v ds = 50v, i d = 180a i d = 180a v gs = 20v v gs = -20v IRFP4468pbf 2014-8-14 2 www.kersemi.com
fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage 0.01 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60 s pulse width tj = 25c 4.0v vgs top 15v 10v 8.0v 6.0v 5.5v 5.0v 4.5v bottom 4.0v 2.0 3.0 4.0 5.0 6.0 7.0 v gs , gate-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) v ds = 25v 60 s pulse width t j = 25c t j = 175c -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 2.5 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 180a v gs = 10v 0 50 100 150 200 250 300 350 400 450 q g total gate charge (nc) 0 4 8 12 16 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 80v v ds = 50v v ds = 20v i d = 180a 0.1 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60 s pulse width tj = 175c 4.0v vgs top 15v 10v 8.0v 6.0v 5.5v 5.0v 4.5v bottom 4.0v 1 10 100 v ds , drain-to-source voltage (v) 0 5000 10000 15000 20000 25000 30000 35000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 100 khz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd IRFP4468pbf 2014-8-14 3 www.kersemi.com
fig 8. maximum safe operating area fig 10. drain-to-source breakdown voltage fig 7. typical source-drain diode forward voltage fig 11. typical c oss stored energy fig 9. maximum drain current vs. case temperature fig 12. maximum avalanche energy vs. draincurrent 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 500 1000 1500 2000 2500 3000 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 30a 41a bottom 180a -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 90 100 110 120 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e i d = 5ma 0 20 40 60 80 100 v ds, drain-to-source voltage (v) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 e n e r g y ( j ) 25 50 75 100 125 150 175 t c , case temperature (c) 0 50 100 150 200 250 300 i d , d r a i n c u r r e n t ( a ) limited by package 0.1 1 10 100 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100 sec dc limited by package IRFP4468pbf 2014-8-14 4 www.kersemi.com
fig 13. maximum effective transient thermal impedance, junction-to-case fig 14. typical avalanche current vs.pulsewidth fig 15. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 14, 15: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 16a, 16b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 14, 15). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figures 13) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 t 1 , rectangular pulse duration (sec) 0.0001 0.001 0.01 0.1 1 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) ? (sec) 0.063359 0.000278 0.110878 0.005836 0.114838 0.053606 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 c ci= i / ri ci= i / ri 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav, assuming ? j = 25c and tstart = 150c. 0.01 allowed avalanche current vs avalanche pulsewidth, tav, assuming tj = 150c and tstart =25c (single pulse) 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 200 400 600 800 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1% duty cycle i d = 180a IRFP4468pbf 2014-8-14 5 www.kersemi.com
      fig 16. threshold voltage vs. temperature    !   
        !   100 200 300 400 500 600 700 800 900 1000 di f / dt - (a / s) 0 8 16 24 32 i r r m - ( a ) i f = 72a v r = 85v t j = 125c t j = 25c 100 200 300 400 500 600 700 800 900 1000 di f / dt - (a / s) 0 8 16 24 32 40 i r r m - ( a ) i f = 108a v r = 85v t j = 125c t j = 25c 100 200 300 400 500 600 700 800 900 1000 di f / dt - (a / s) 0 500 1000 1500 q r r - ( n c ) i f = 72a v r = 85v t j = 125c t j = 25c 100 200 300 400 500 600 700 800 900 1000 di f / dt - (a / s) 0 500 1000 1500 2000 q r r - ( n c ) i f = 108a v r = 85v t j = 125c t j = 25c -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 1.0a i d = 1.0ma i d = 250 a IRFP4468pbf 2014-8-14 6 www.kersemi.com
fig 23a. switching time test circuit fig 23b. switching time waveforms fig 22b. unclamped inductive waveforms fig 22a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 24a. gate charge test circuit fig 24b. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 21. "   for n-channel hexfet   power mosfets  
     ? 
     ?     ?

        p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period #    ! " #$"%&%$ # + - + + + - - -      ?      !  ?   " #$## ?        %  && ? #$##'$

  d.u.t. v ds i d i g 3ma v gs .3 f 50k .2 f 12v current regulator same type as d.u.t. current sampling resistors + - v ds 90% 10% v gs t d(on) t r t d(off) t f   ( ) 1 *  %   0.1 %       &'(''  + -     IRFP4468pbf 2014-8-14 7 www.kersemi.com
to-247ac packages are not recommended for surface mount application. 

 
   
 
  

 

 
  line h international logo rectifier as s e mb l y 56 57 irfpe30 135h year 1 = 2001 dat e code part number indicates "l ead-f r ee" week 35 lot code in the assembly line "h" as s embled on ww 35, 2001 note: "p" in ass embly line pos ition example: wi t h as s e mb l y this is an irfpe30 lot code 5657 IRFP4468pbf 2014-8-14 8 www.kersemi.com


▲Up To Search▲   

 
Price & Availability of IRFP4468

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X